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ABSTRACT
Community detection is essential to various graph analysis applica-
tions. Infomap is a graph clustering algorithm capable of achieving
high-quality communities. However, it remains a very challenging
problem to effectively apply Infomap on large graphs. By analyzing
communication and workload patterns of Infomap and leveraging
a distributed delegate partitioning and distribution method, we
develop a new heuristic strategy to carefully coordinate the com-
munity constitution from the vertices of a graph in a distributed
environment, and achieve the convergence of the distributed clus-
tering algorithm. We have implemented our optimized algorithm
using MPI (Message Passing Interface), which can be easily em-
ployed or extended to massively distributed computing systems. We
analyze the correctness of our algorithm, and conduct an intensive
experimental study to investigate the communication and com-
putation cost of our distributed algorithm, which has not shown
in previous work. The results demonstrate the scalability and the
correctness of our distributed Infomap algorithm with large-scale
real-world datasets.
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1 INTRODUCTION
Finding community structures in graphs is a fundamental opera-
tion in various domain applications. Examples include identifying
communities in social networks [13] and research collaboration
networks [12], unsupervised learning [19], and optimizing graph
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traversal [2]. Many community detection (also named graph cluster-
ing) algorithms have been developed to classify vertices of a graph
into different sets, where vertices have dense intra-connections
within a set, but sparse inter-connections between sets [11].

Infomap [22] is a community detection algorithm capable of
achieving high-quality communities [5]. However, the sequential
Infomap algorithm is less capable to process large graphs in a scal-
able manner compared with other community detection algorithms,
such as the Louvain algorithm [7]. Researchers make great efforts
to parallelize the Infomap algorithm to tackle large graphs. For
example, Bae et al. proposed different parallel methods for accel-
erating Infomap [4, 5]. However, they only showed a comparably
limited scalability with up to 128 parallel processing units. Besides,
the running time was also considerably long for large graphs, re-
ported as near 2500 seconds for UK-2007 [8] (a graph with about
3.78 billion edges) using 128 cores. Such a performance degradation
is mainly due to hubs (i.e., high-degree vertices) that commonly exist
in large scale-free graphs generated from real-world applications.
The existence of hubs makes it challenging to balance workload
and communication among processors when tackling community
detection in a distributed environment. This scalability issue has
not been successfully addressed in the existing work.

In this paper, we present a new scalable and high-quality Infomap
algorithm in a distributed environment, where the computation and
communication costs associated with the hubs are effectively bal-
anced. Meanwhile, our new algorithm can ensure the high quality
of the clustering results. More specifically, we make the following
four main contributions:

First, we investigate and address the challenging workload imbal-
ance problem associated with large scale-free graphs by exploiting a
graph partitioning method with vertex delegates used in distributed
graph traversal algorithms [20]. Through a careful duplication of
hubs among processors, our method can ensure each processor
to handle a similar number of edges, and balance workload and
communication among processors, which is neglected in previous
work [3, 5]. Therefore, our approach can achieve optimal perfor-
mance in distributed community detection.

Second, we design a novel distributed Infomap algorithm. We
adopt a synchronized strategy in our distributed algorithm, and
carefully swap the updated community information of hubs and
low-degree vertices, which can effectively make the community in-
formation on each processor consistent. Moreover, we use a unique
heuristic strategy to avoid the vertex bouncing problem that causes
non-convergence in community detection. Therefore, our approach
can ensure the accuracy of distributed community detection.

Third, instead of using the open source graph processing frame-
work (e.g., GraphLab [14] and PowerGraph [14]), we investigate
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the workload model of the Infomap algorithm in a distributed envi-
ronment and provide a distributed implementation directly based
on MPI. According to the recent work [23], the GraphLab based
implementations do not show a strong scalability with very large
real-world datasets. Moreover, these implementations cannot be ex-
tended to large-scale machines. Our implementation can effectively
overcome these drawbacks.

Our extensive experiments show that our distributed algorithm
is effective and correct. We also show the communication cost
and the detailed time breakdown of different components in our
algorithm, which were mostly ignored in the previous work. Our
algorithm outperforms by around 6 times the recent work based
on GraphLab. Our results have scaled up to 4,096 processors for
distributed Infomap, and clearly showed an improved scalability
over the previous state-of-the-art.

2 BACKGROUND AND MOTIVATION
Community detection has been extensively studied [11]. To effi-
ciently and effectively tackle large graphs, one common strategy
is to leverage multiple processing units to conduct community de-
tection in a parallel or distributed fashion. In this section, we first
review the related work on parallel and distributed community de-
tection algorithms, and show the needs to parallelize the Infomap
algorithm. Then, we revisit the mechanism of Infomap, and dis-
cuss the fundamental research challenges in designing a scalable
distributed Infomap algorithm.

2.1 Related Work
Among different community detection algorithms, the modularity-
based algorithms (particularly, the Louvain algorithm [7]) have
been successfully parallelized in different ways. Bhowmick et al. [6]
proposed an OpenMP implementation of the Louvain algorithm
that adopted a lock mechanism. Staudt et al. [24, 25] proposed
a parallelization approach by assembling the Louvain algorithm
and the label propagation algorithm. Lu et al. [17] took advantage
of the coloring algorithm [15, 16] as a preprocessing step for a
parallel Louvain algorithm. Cheong et al. [10] presented a GPU-
based Louvain algorithm based on the Divide-and-Conquer strategy.
Naim et al. [18] presented a highly efficient Louvain algorithm on
a single GPU, where each thread is responsible for one edge to
reduce uneven workload caused by nodes of highly varying degrees.
Wickramaarachchi et al. [26] proposed an MPI implementation of
distributed Louvain algorithm for graphs with about 10 million
edges. Zeng et al. [29, 30] presented a parallel modularity-based
algorithm and showed its scalability with over 10,000 cores.

The sequential Infomap algorithm [22] can achieve high-quality
communities based on random walks through a graph [5], but
only can process comparably small graph sizes. The paralleliza-
tion efforts for Infomap only achieved marginal scalability. Bae et
al. [3] proposed RelaxMap, a parallelization of Infomap in a shared-
memory multi-core environment, which can achieve a high-quality
output similar to the sequential Infomap algorithm. However, this
shared-memory implementation does not show its capability of
processing a very large graph. Later, Bae et al. proposed a prioritiza-
tion method [4] to reduce the total running time. GossipMap [5] is
a distributed algorithm of Infomap based on an open source graph

processing framework GraphLab [14]. However, its scalability was
shown only on 128 cores, and its running time was notably high
for the large real-world datasets. Thus, only very limited scalability
has been demonstrated by the existing shared-memory and dis-
tributed parallel Infomap algorithms. The existing methods have
not fully solved the fundamental challenges (Section 2.3) in de-
signing scalable distributed Infomap algorithms. In this paper, we
investigate these challenges, and develop an optimized scalable
Infomap algorithm.

2.2 Infomap Algorithm
In a graph 𝐺 = (𝑉 , 𝐸), 𝑉 is the set of vertices and 𝐸 is the set of
edges. The weight of an edge between two vertices, 𝑢 and 𝑣 , is
denoted as 𝑤𝑢,𝑣 , which is 1 in an undirected unweighted graph.
The community detection problem in Infomap is to find vertices
sets, named communities (or modules), which contain high intra-
module information flow but low inter-module flow. We denote the
non-overlapping community set 𝐶 of a graph 𝐺 as:

∪𝑐𝑖 = 𝑉 ,∀𝑐𝑖 ∈ 𝐶; 𝑐𝑖 ∩ 𝑐 𝑗 = ∅,∀𝑐𝑖 , 𝑐 𝑗 ∈ 𝐶 (1)

For simplicity, we only consider undirected unweighted graphs.
The original Infomap work [22] shows that the Infomap algorithm
can be applied on both undirected and directed graphs. Therefore,
our work can be easily extended to directed graphs.

The map equation [22] is the objective function of the Infomap
algorithm. It is based on the information flow, and is used to find
a compressed representation of a set of random walks through
a graph. Its insight is that a succinct representation of a graph
walk can be expressed over clusters rather than individual vertices,
and the clustering that produces the shortest representation also
produces the community detection result of the highest quality
in practice. Infomap uses minimum description length (𝑀𝐷𝐿) to
measure the quality of detected community results, where a shorter
MDL means a more compressed community structure.

The definition of map equation is shown in Equation 2:

𝐿(𝑀) = 𝑞↶𝐻 (Q) + ∑
𝑚∈𝑀

𝑝𝑚
⟳
𝐻 (P𝑚), (2)

where𝑀 is the set of modules, 𝑞↶ is the sum of the exit probability
of each module in the graph, 𝐻 (Q) is the average code length of
movements between the modules, 𝑝⟳ is the stay probability for
the random walks in a module𝑚, which is equal to the sum of the
exit probability and the visit probability of the random walks, and
𝐻 (P𝑚) is the average code length of a module codebook for 𝑚.
𝐿(𝑀) represents the lower bound on the code length of detected
community structure𝑀 .

The map equation can be expanded as in Equation 3:

𝐿(𝑀) = ( ∑
𝑚∈𝑀

𝑞𝑚)𝑙𝑜𝑔(
∑

𝑚∈𝑀
𝑞𝑚)

−2 ∑
𝑚∈𝑀

𝑞𝑚𝑙𝑜𝑔(𝑞𝑚) −
∑

𝛼 ∈𝑉
𝑝𝛼 𝑙𝑜𝑔(𝑝𝛼 )

+ ∑
𝑚∈𝑀
(𝑞𝑚 +

∑
𝛼 ∈𝑚

𝑝𝛼 )𝑙𝑜𝑔(𝑞𝑚 +
∑

𝛼 ∈𝑚
𝑝𝛼 ),

(3)

where 𝑞𝑚 is the exit probability of a module𝑚, 𝑝𝛼 is the visit prob-
ability of a vertex 𝛼 during the random walk, and 𝑉 is the set of
vertices in the graph. For an undirected graph, 𝑝𝛼 corresponds to
the relative weight𝑤𝛼 that is computed as the total weight of the
links connected to the vertex 𝛼 divided by twice the total weight
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of all links in the graph (self-connected edges excluded). The visit
probability of a module𝑚, described as 𝑝𝑚 , is the relative weight
of𝑚, calculated as

∑
𝛼 ∈𝑚

𝑝𝛼 . The exit probability of𝑚, 𝑞𝑚 , is defined

by the relative weight of links exiting the module 𝑞.
∑

𝑚∈𝑀
𝑞𝑚 is the

total relative weight of the links between modules.
Algorithm 1 shows the sequential Infomap algorithm conducted

in an iterative fashion. In each iteration, the algorithm greedily
minimizes the MDL change 𝛿𝐿 (𝛿𝐿 < 0) (i.e., maximizes the MDL
decrease) to minimize the MDL when moving an isolated vertex
𝑢 into a module𝑚, which is based on Equation 3. The algorithm
continues this process until there is no more vertex movement
that can make the MDL increase. Then, the algorithm treats each
community as one vertex to form a new graph and continues the
above process. The algorithm stops when communities become
stable (Line 31).

In Algorithm 1, 𝐺𝑘 is the graph in the 𝑘th iteration and 𝑀𝑘
𝑢 is

the community of a vertex 𝑢 in 𝐺𝑘 . The output of the algorithm
is a module set 𝑀 of each vertex and the MDL 𝐿 of the detected
community. There are three main phases in the algorithm:
• Phase 1: The visit probability of each vertex 𝑢 is computed in
terms of the total relative weight of the links connected to 𝑢,
described as Line 3.
• Phase 2: The algorithm follows a hierarchical agglomerative clus-
tering strategy where initially each vertex is regarded as a unique
module, described as Lines 7 to 11. The algorithm initializes the
visit probability of each module using the visit probability of each
vertex (Line 9), and initializes the exit probability of each module
using the links connected to each vertex (Line 10). In Lines 15
to 23, the algorithm calculates each MDL gain by moving a ver-
tex 𝑢 from its original module𝑀𝑘

𝑢 to each neighbor module, and
determines the movement of 𝑢 to the module𝑀 ′𝑘𝑢 to achieve the
minimum MDL change 𝛿𝐿. If there is no more vertex movement,
the algorithm exits the loop of estimating 𝛿𝐿 of each vertex. In
Line 25, the algorithm calculates the new MDL length using the
updated 𝑝𝑀

𝑘
𝑢 and 𝑞𝑀

𝑘
𝑢 .

• Phase 3: The algorithm merges the current communities into
a new graph in Lines 27 to 29. In the new graph 𝐺𝑘+1, each
vertex in the vertex set 𝑉𝑘+1 represents a community 𝑐 within
the current communities 𝐶𝑘 , and each edge in the edge set 𝐸𝑘+1

represents all the edges connecting the communities𝑀𝑘
𝑢 and𝑀𝑘

𝑣 .
The algorithm continues until the communities become stable
(i.e., the MDL change is less than a predefined threshold 𝜃 ) or the
iteration number reaches a user-specified maximum number.

As we can see, Algorithm 1 mainly contains two levels of itera-
tions: The inner iteration is from Lines 15 to 23 to calculate the
minimal MDL. The outer iteration is from Lines 5 to 31, containing
four steps, community initialization (Lines 7-11), minimal MDL
calculation (Lines 15-23), MDL update (Line 25), and community
merging (Lines 27-29). Each outer iteration can have multiple inner
iterations.

2.3 Research Challenges
Algorithm 1 is computationally intensive. For example, it can take a
long time (e.g., several hours) for a large-scale graph (e.g., one with
billions of edges) using a single processor. A common strategy for

Algorithm 1 Sequential Infomap Algorithm
Require:

𝐺0 = (𝑉 0, 𝐸0): initial undirected graph, where 𝑉 0 is vertex set
and 𝐸0 is the edge set;
𝑀0: initial community of 𝐺0;
𝜃 : quality improvement threshold;
𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 : maximum iteration number.

Ensure:
𝑀 : resulting module;
𝐿: resulting MDL;
𝛿𝐿: change of MDL.

1: 𝑘 = 0 // 𝑘 indicates the iteration number
2: for all 𝑢 ∈ 𝑉 0 do
3: 𝑝𝑢 = 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)/|𝐸 |
4: end for
5: repeat
6: // Initialize communities
7: for all 𝑢 ∈ 𝑉𝑘 do
8: 𝑀𝑘

𝑢 = {𝑢}
9: 𝑝𝑀

𝑘
𝑢 =

∑
𝛼 ∈𝑀𝑘

𝑢

𝑝𝛼

10: 𝑞𝑀
𝑘
𝑢 =

∑
𝑤𝑢,𝑣, (𝑢, 𝑣) ∈ 𝐸𝑘 , 𝑢 ∈ 𝐶𝑘

𝑢 and 𝑣 ∉ 𝐶𝑘
𝑢

11: end for
12: Compute 𝐿 = 𝐿(𝑀) using Equation 3
13: Randomize the order of vertices
14: // Calculate the change of MDL 𝛿𝐿
15: repeat
16: for all 𝑢 ∈ 𝑉𝑘 do
17: if 𝑀 ′𝑘𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝛿𝐿

𝑀𝑘
𝑢→𝑀′𝑘𝑢

) < 0 then
18: 𝑀𝑘

𝑢 = 𝑀𝑘
𝑢 − {𝑢};𝑀 ′𝑘𝑢 = 𝑀 ′𝑘𝑢 ∪ {𝑢}

19: 𝑝𝑀
𝑘
𝑢 =

∑
𝛼 ∈𝑀𝑘

𝑢

𝑝𝛼 − 𝑝𝑢 ;𝑝𝑀
′𝑘
𝑢 =

∑
𝛼 ∈𝑀′𝑘𝑢

𝑝𝛼 + 𝑝𝑢

20: update 𝑞𝑀
𝑘
𝑢 ; update 𝑞𝑀

′𝑘
𝑢

21: end if
22: end for
23: until No more vertex movement
24: // Calculate updated MDL
25: Compute 𝐿𝑛𝑒𝑤 = 𝐿(𝑀) using Equation 3
26: // Merge communities into a new graph
27: 𝑉𝑘+1 ← 𝐶𝑘

28: 𝐸𝑘+1 ← 𝑒 (𝐶𝑘
𝑢 ,𝐶

𝑘
𝑣 )

29: 𝐺𝑘+1 = (𝑉𝑘+1, 𝐸𝑘+1)
30: 𝑘 = 𝑘 + 1
31: until 𝑘 ≤ 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and 𝐿 − 𝐿𝑛𝑒𝑤 < 𝜃

acceleration is to first partition and distribute the original graph
among multiple processors, and then conduct computation in a
distributed fashion.

However, it is non-trivial to achieve scalable community detec-
tion for large graphs generated from real-world applications. These
graphs typically are scale-free graphs and follow the power-law de-
gree distribution, where the majority of vertices have small degrees,
while only a few vertices (or hubs) have extremely high degrees. The
existence of hubs makes it challenging to achieve balanced work-
load and communication among processors. In Algorithm 1, we can
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Figure 1: 1D partitioning of a graph on three processors,
where a shaded vertex is a ghost vertex residing on a remote
processor.

easily see that the complexity of the most intensive computational
components, community initialization (Lines 7-11) and iterative
MDL calculation (Lines 16-22), is proportional to the vertex number.
The existing distributed graph clustering algorithms [10, 21, 29, 30]
often employed simple 1D partitioning strategies, which prefer to
put the entire adjacency list of a vertex into a single partition. If a
processor is assigned with hubs, the workload and communication
of this processor can be significantly higher than the other proces-
sors, which can inhibit the overall performance and scalability of
distributed graph algorithms. Figure 1 shows an example to illus-
trate this problem. A simple graph, where the vertex 1 is a hub, is
divided among three processors, 𝑃𝐸0, 𝑃𝐸1, and 𝑃𝐸2. A shaded ver-
tex is a ghost vertex residing on a remote processor. The subgraph
assigned to 𝑃𝐸0 contains the vertex 1 and has more edges, thus
incurring more workload on 𝑃𝐸0. In addition, inter-processor com-
munication is generally conducted through ghost vertices. There
are more edges connecting the local vertices and the ghost vertices
on 𝑃𝐸0, thereby incurring more communication between 𝑃𝐸0 and
the other processors.

Moreover, it is very challenging to obtain accurate results in a
distributed environment as each processor only has partial graph
information. For example, in Lines 15 to 23 of Algorithm 1, it de-
termines the movement of each vertex 𝑢 to achieve the minimum
𝛿𝐿 among the neighbor modules of 𝑢. However, the neighbors of 𝑢
may be located on different remote processors. Bae et al. [5] showed
some relatively simple methods on how to move vertices in a dis-
tributed environment, such as assigning each vertex by a majority
vote among its local neighbors (no remote information required), or
moving vertices to the modules with maximum aggregate network
flow. However, these methods only use local information of each
processor and cannot match the output quality of the sequential
Infomap algorithm. Alternatively, the information of boundary ver-
tices (e.g., the community IDs of the boundary vertices) can be
exchanged among the processors. For example, in Figure 1, in each
iteration 𝑃𝐸0 sends the community information of the vertex 1 to
𝑃𝐸2, no matter whether the vertex 1 is in the same community with
the vertices 4 and 5 or not. In this case, the vertex 3 on 𝑃𝐸1 still
only has the partial community information of the vertex 1 and
is not aware of its community information on 𝑃𝐸2. Therefore, we
cannot achieve the quality of the sequential Infomap algorithm
either. It is non-trivial to determine how information can be appro-
priately swapped among processors and how much information
would suffice to achieve accurate results for a distributed Infomap
algorithm.

3 OUR METHOD
3.1 Overview
We aim to address all these challenges analyzed in Section 2.3 in
our distributed Infomap algorithm design. We first need to model
the computation and communication costs of each processor in a
distributed environment. Zeng et al. [29, 30] proposed an efficient
model to estimate the workload of distributed Louvain algorithm
using the edge number on each processor. Similar with the Infomap
algorithm, in the Louvain algorithm each vertex needs to check all
of its neighbors. Inspired by this work, we employ a graph partition
strategy that assures each processor has a similar number of edges.

For designing scalable distributed community detection for large
scale-free graphs, we also need to carefully consider hub vertices,
as they can easily incur imbalanced workload and communication
among processors. In a recent work conducted by Pearce et al. [20],
they used a delegate partitioning method to optimize parallel traver-
sal for scale-free graphs, which can make each processor have not
only a similar number of edges but also balanced communication.
Inspired by this work, we exploit the delegate partitioning method
that duplicates high-degree vertices (named delegates), and then
re-distributes their associated edges among processors.

We design our distributed Infomap algorithm by following the
general logic of the sequential Infomap algorithm: After the graph
partitioning step, the distributed algorithm conducts local clustering
on each processor and then swaps necessary module information
(e.g., exit probability and visit probability) among processors. If
there is no more vertex movement, the algorithm merges the com-
munities into a new graph and repeats the clustering on the new
graph. The algorithm stops if there is no more MDL change.

Due to the involvement of delegates, the information exchange
and synchronization become challenging with massive processors.
The way to efficiently and effectively swap information among
processors not only affects the accuracy but also the scalability
of the algorithm. In addition, in a distributed environment, the
convergence property of the Infomap algorithm is also an important
factor that we should consider.

In this section, we will show our solution to address all these
issues. We will first introduce the framework of our distributed
Infomap algorithm (Section 3.2), and then lay out the key com-
ponents of the framework, including preprocessing (Section 3.3),
parallel local clustering and information swapping (Section 3.4),
and distributed graph merging (Section 3.5).

3.2 Distributed Infomap Algorithm Framework
Algorithm 2 shows the framework of our distributed Infomap algo-
rithm that consists of four stages:

The first stage corresponds to Line 1 that is the preprocessing
stage. In this stage, we partition the graph with delegates, calculate
the visit probability of each vertex, and calculate the exit probability
of each link as described in Section 3.3. For an undirected graph, we
transform it into a directed graph. After delegate partitioning, each
processor can have a similar number of edges, and the subgraph
on each processor consists of both high-degree duplicates and low-
degree vertices.

The second stage is referred as parallel clustering with delegates,
corresponding to Lines 2 to 7. In this stage, the subgraph on each
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Algorithm 2 Parallel Infomap Algorithm on Each Processor
Require:

𝐺 = (𝑉 , 𝐸) : undirected graph, where 𝑉 is vertex set and 𝐸 is
the edge set;
𝑝 : processor number.

Ensure:
𝑀 : resulting module set;
𝐿: resulting MDL;
𝛿𝐿: change of MDL.

1: Preprocessing
2: repeat
3: Local clustering with duplicates
4: Broadcast delegate states with the minimum 𝛿𝐿

5: Swap community information
6: Update community information on each processor
7: until No vertex community state changing
8: Merge communities into a new graph, and partition the new

graph using 1D partitioning
9: repeat
10: repeat
11: Local clustering
12: Swap community states
13: Update community information on each processor
14: until No vertex movement
15: Merge communities into a new graph
16: until No improvement of MDL

processor consists of low-degree vertices and duplicated hubs. The
algorithm calculates the best community movement for each vertex
as Line 3. In order to make sure that each delegate has consistent
community movement information and 𝛿𝐿, the algorithm broad-
casts the information of delegates that achieve the largest decrease
of MDL. Although this is a collective operation involving all proces-
sors, its cost is marginal because of a limited number of delegates.
After the information communication between Lines 4 and 5, the
algorithm updates local community information, such as the exit
probability and the visit probability of modules. This process con-
tinues until there is no more community changing for each vertex.

The third stage, corresponding to Line 8, merges the communities
into a new graph, and applies a normal 1D partition for the newly
merged graph. The reason for us to use the normal 1D partition is
that after the step of graph merging, the size of the new graph is
several orders of magnitude less than the original graph.

The fourth stage, corresponding to Lines 10 to 14, processes the
subgraphs in a way similar to Lines 2 to 7, except there are no
delegated vertices in the subgraphs. Thus, this stage is referred
as parallel clustering without delegates. The algorithm stops when
there is no more improvement of modularity.

3.3 Preprocessing
In our preprocessing stage, we first use delegate partitioning [20]
to achieve balanced workload and communication cost among pro-
cessors. The basic idea is that vertices with degrees greater than a
threshold are duplicated and distributed on all processors, while a

Figure 2: Delegate partitioning among two processors.

basic 1D partitioning is applied to low-degree vertices. The high-
degree vertices or hubs are referred as delegates. Ideally, after parti-
tioning, an outgoing edge whose source vertex is high-degree will
be stored in the partition containing the edge’s target vertex. In this
way, the delegate and the target vertex will co-locate in the same
partition. Thus, each processor can have a similar number of edges.

According to the map equation in Section 2.2, in the partitioning
phase, we need to initialize the visit probability of each vertex and
the exit probability of each link. For an input undirected graph G =
(V, E) with a vertex set V and an edge set E, the delegate partitioning
can be concluded as the following steps on 𝑝 processors:

First, we calculate the degree 𝑑𝑒𝑔𝑟𝑒𝑒 (𝛼) of each vertex 𝛼 in a
distributed manner. The visit probability 𝑝𝛼 of each vertex 𝛼 as
𝑑𝑒𝑔𝑟𝑒𝑒 (𝛼)/|𝐸 |, which is also its exit probability.

Second, we detect high-degree vertices and duplicate them on
all processors. The high-degree vertices are identified based on a
threshold 𝑑ℎ𝑖𝑔ℎ . Accordingly, the edge set 𝐸 is partitioned into two
subsets: 𝐸ℎ𝑖𝑔ℎ (whose source vertexes are high-degree) and 𝐸𝑙𝑜𝑤
(whose source vertex degrees are less than 𝑑ℎ𝑖𝑔ℎ). The delegates of
high-degree vertices are created on all processors. After this step,
the local vertices on each processor include the duplicated high-
degree vertices, and the low-degree vertices that are partitioned by
the traditional 1D partitioning.

Third, we define a round-robin 1D partitioning, where we parti-
tion the edges in 𝐸𝑙𝑜𝑤 according to their source vertex partitioning
mapping, and partition the edges in 𝐸ℎ𝑖𝑔ℎ according to their target
vertex partitioning.

Fourth, we correct possible partition imbalances. Ideally, the
number of edges locally assigned to each processor (i.e., 𝐸𝑙𝑜𝑤 and
𝐸ℎ𝑖𝑔ℎ) should be close to |𝐸 |𝑝 for 𝑝 processors. However, this may
not be gained through the previous steps. In order to achieve this
goal, we reassign an edge in 𝐸ℎ𝑖𝑔ℎ to any partition because its source
vertex is duplicated on all processors. In particular, we reassign
these edges to those processors whose numbers of edges are less
than |𝐸 |𝑝 . In the original sequential Infomap algorithm, it treats each
undirected edge 𝑒𝑎𝑏 between two vertices 𝑎 and 𝑏 as a directed edge.
The direction is defined by the order of vertex ID, that is if 𝑎 < 𝑏,
the edge 𝑒𝑎𝑏 is the outlink for the vertex 𝑎; otherwise, the edge 𝑒𝑎𝑏
is the inlink for 𝑎. For each link, we also need to calculate its exit
probability, which is defined as 1

|𝐸 | . Compared with the original
work [20], we do not differentiate the delegates among the master
and worker processors.

Figure 2 shows an example of the delegate partitioning result.
Originally, all vertices are evenly distributed on 2 processors, as
shown in the left image. Because each vertex needs to calculate 𝛿𝐿
for all its neighbor vertices, the workload of each vertex is propor-
tional to its edge number. If we add together the edge number of
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List 1Message Interface
1: struct {
2: // module ID
3: uint64_t𝑚𝑜𝑑𝐼𝐷 ;
4: // sum of visit probability of the module
5: double 𝑠𝑢𝑚𝑃𝑟 ;
6: // sum of exit probability of the module
7: double 𝑒𝑥𝑖𝑡𝑃𝑟 ;
8: // vertex number in this module
9: int 𝑛𝑢𝑚𝑀𝑒𝑚𝑏𝑒𝑟𝑠;
10: // whether this local module has been sent or not
11: bool 𝑖𝑠𝑆𝑒𝑛𝑡 ;
12: }𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 ;

each vertex on each processor, we can clearly see that the work-
load is imbalance among the processors, where 𝑃𝐸0 has 16 edges,
and 𝑃𝐸1 has 12 edges. If we choose the degree threshold as 5, then
the vertex 2 is the delegate and is duplicated. In order to correct
possible partition imbalances, we move the edges connecting the
delegates and the low-degree vertices. For example, we move the
edge (2,5) on 𝑃𝐸1 to 𝑃𝐸0, as shown in the right image. Therefore,
each processor has 14 edges, and the final partition is balanced.

3.4 Parallel Local Clustering and Information
Swapping

After delegate partitioning, each processor gains a subgraph𝐺𝑠 =

(𝑉𝑠 , 𝐸𝑠 ), where 𝑉𝑠 is the vertex set and 𝐸𝑠 is the edge set of the
subgraph 𝐺𝑠 . As stated in Section 3.2, in the stage of parallel clus-
tering with delegates (Lines 2 to 7 in Algorithm 2),𝑉𝑠 is divided into
𝑉𝑙𝑜𝑤 and 𝑉ℎ𝑖𝑔ℎ , where 𝑉𝑙𝑜𝑤 is the low-degree vertices and 𝑉ℎ𝑖𝑔ℎ is
the global high-degree vertices (i.e., hubs). In the stage of parallel
clustering without delegates ( Lines 10 to 14 in Algorithm 2), we
do not differentiate the high-degree vertices and the low-degree
vertices.

The parallel clustering algorithm runs on each subgraph follow-
ing similar steps as the sequential Infomap algorithm:
• Each processor calculates 𝛿𝐿 for each vertex in its subgraph. Each
processor broadcasts the high-degree vertices who achieve the
minimum local 𝛿𝐿, and swaps the community IDs of its boundary
vertices with its neighbor processors. To decide the movement of
a vertex, each processor first checks whether the vertex should be
moved to a boundary community. If so, we use the minimum label
strategy to avoid the vertex bouncing problem [17]. Otherwise,
the vertex can be moved to any community.
• Each processor updates its local module information, calculates
its local minimal MDL value, and then uses the Allreduce func-
tion to obtain the global minimal MDL value from the other
processors.
• Each processor swaps its community information with its neigh-
bor processors for calculating 𝛿𝐿 in the next iteration.
• If there is no more vertex movement or there is no more MDL
optimization, the original graph is merged into a new graph (this
step will be described in Section 3.5).

Algorithm 3 Parallel Information Swapping on Each Processor
1: //Prepare information swapping
2: 𝑉ℎ𝑖𝑔ℎ_𝑚𝑖𝑛 ← the hubs with the global minimal MDL
3: for all 𝑢 ∈ 𝑉ℎ𝑖𝑔ℎ_𝑚𝑖𝑛 do
4: if 𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 (𝑢) 𝑁𝑂𝑇 𝑠𝑒𝑛𝑡 then
5: Construct𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 (𝑢) with 𝑖𝑠𝑆𝑒𝑛𝑡 as false
6: else
7: Set𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 (𝑢) with 𝑖𝑠𝑆𝑒𝑛𝑡 as true
8: end if
9: end for
10: 𝑉𝑙𝑜𝑤 ← the low-degree vertices
11: for all 𝑢 ∈ 𝑉𝑙𝑜𝑤 do
12: if 𝑢 is a ghost vertex on other processors then
13: if 𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 (𝑢) 𝑁𝑂𝑇 𝑠𝑒𝑛𝑡 then
14: Construct𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 (𝑢) with 𝑖𝑠𝑆𝑒𝑛𝑡 as false
15: else
16: Set𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 (𝑢) with 𝑖𝑠𝑆𝑒𝑛𝑡 as true
17: end if
18: end if
19: end for
20: Swap module information with neighbor processors
21: //Update module information
22: for all𝑚 in received module information do
23: if 𝑚.𝑚𝑜𝑑𝐼𝐷 𝑁𝑂𝑇 𝑒𝑥𝑖𝑠𝑡 then
24: Build a new module according to𝑚
25: else
26: if 𝑚.𝑖𝑠𝑆𝑒𝑛𝑡 == 𝑓 𝑎𝑙𝑠𝑒 then
27: Add the information of𝑚 to the existing module
28: else
29: Continue
30: end if
31: end if
32: end for

• For the newly merged graph, where high-degree vertices and
low-degree vertices are not differentiated, the above steps are
applied until there is no more MDL change.

Although the collective operation (i.e., Allreduce) has been used,
its cost is marginal because of a limited number of hubs. In Sec-
tion 4, we evaluate the performance results to verify the workload
balancing and the scalability of our algorithm.

Figure 3: Example of information swap.
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In our distributed algorithm, a well-designed information swap-
ping strategy is needed. As illustrated in Figure 3, the vertices 0 and
3 on 𝑃𝐸0 are in the same community, while the vertices 6, 7 and
8 on 𝑃𝐸2 are in the same community. A naive information swap-
ping strategy is to let each processor only send the community
information of boundary vertices. For example, 𝑃𝐸0 only sends the
information of the vertex 3 and 𝑃𝐸2 only sends the information of
the vertices 6 and 8. In this case, after information swapping, the
vertex 5 cannot have the whole neighbor community information,
such that the vertex 5 does not know that the vertices 0 and 3 are
in the same community on 𝑃𝐸0, and the vertex 7 is in the same
community with the vertices 6 and 8 on 𝑃𝐸2. This inconsistency
on local community information incurs inaccurate results in the
following iterations, leading to a severe problem for detecting final
global communities.

To address this challenging issue, in our information swapping,
we consider swapping the whole community information of each
boundary vertex. However, this can incur a problem that the same
community information can be sent multiple times. Considering
Figure 3, when we send the community information of the vertices
6 and 8 from 𝑃𝐸2 to 𝑃𝐸1, because they are in the same community,
their community information will be received twice on 𝑃𝐸1. In
order to overcome this disadvantage, we design a message interface
𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 as List 1 for swapping the whole local community
information of boundary vertices. As we can see, the message inter-
face𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 contains not only the module information (e.g.,
ID, the sum of visit probability, the sum of exit probability, etc.),
but also the information on whether this module information has
been sent or not.

Based on this message interface, we develop the information
swapping algorithm as Algorithm 3. Each processor first prepares
its local module information that needs to be swapped with the
neighbor processors (Lines 2 to 19). Specifically, each processor
only needs to consider two types of vertices: the hubs that have
the global minimal MDL value, and the low-degree vertices that
are the ghost vertices on other processors. For each of these two
types of vertices, each processor constructs the message interface
𝑀𝑜𝑑𝑢𝑙𝑒_𝐼𝑛𝑓 𝑜 . If the module information of a vertex has been sent,
its 𝑖𝑠𝑆𝑒𝑛𝑡 attribute is set as 𝑡𝑟𝑢𝑒 , otherwise 𝑓 𝑎𝑙𝑠𝑒 . Then, the proces-
sors swap the module information (Line 20). After receiving the
information from its neighbor processors, each processor updates
its local module information (Lines 22 to 32). For newly received
module information, a processor builds a new module accordingly.
For the existing module information, if it has not been sent before,
it is added to the existing module; otherwise, it is skipped. Through
this means, we can effectively eliminate the possible duplication
of module information, while ensuring that the whole community
information of each boundary vertex can be synchronized to the
relevant processors.

3.5 Distributed Graph Merging
This step is relatively simple and intuitive. On each processor, the
algorithm merges the local communities into a new graph, where
a community becomes a vertex with the same community ID in

the newly merged graph. Then, the processor sends the informa-
tion of the new vertices and their adjacent edges to their assigned
processors according to the 1D partitioning.

4 EXPERIMENTS
We evaluate the quality and the scalability of our distributed In-
fomap algorithm using different datasets. We also assess the con-
vergence of our distributed algorithm. Finally, we show a detailed
performance evaluation, including the analysis of the partitioning,
the execution time breakdown, and the scalability.

Table 1: Datasets.

Name Description #Vertices #Edges
Friendster [8] An on-line gaming network 65.61M 1.81B
UK-2007 [8] Web crawl of the .uk domain in 2007 105.9M 3.78B
UK-2005 [8] Web crawl of the .uk domain in 2005 39.46M 936.4M
WebBase-2001 [9] A crawl graph by WebBase 118.14M 1.01B
ND-Web [1] A web network of University of Notre Dame 0.33M 1.50M
LiveJournal [9] A virtual-community social site 5.20M 76.94M
YouTube [28] YouTube friendship network 11.34M 29.87M
DBLP [28] A co-authorship network from DBLP 0.31M 1.04M
Amazon [28] Frequently co-purchased products from Amazon 0.33M 0.92M

As shown in Table 1, our experiment has used the datasets at dif-
ferent scales. These include small-scale graphs (the vertex number
is less than 1 million, and the edge number is around 1 million; e.g.,
Amazon, DBLP, and ND-Web), medium-scale graphs (the vertex
number is between 1 million and 10 million, and the edge number
is in the order of 10 million; e.g., LiveJournal and YouTube), and
large-scale graphs (the edge number is around 1 billion; e.g., UK-
2005, WebBase-2001, Friendster, and UK-2007). As far as we know,
the UK-2007 is one of the largest real-world undirected datasets
that are publicly available.

We implemented our algorithm using MPI and C++. Our experi-
ments are performed on Titan, a supercomputer at the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Labora-
tory. Each compute node contains a 16-core 2.2GHz AMD Opteron
processor and 32GB memory. We set the threshold 𝑑ℎ𝑖𝑔ℎ as the
processor number to determine high-degree vertices (i.e., hubs).

4.1 Community Quality Analysis
It is non-trivial to achieve the convergence of a distributed Infomap
algorithm. To this end, we first examine the convergence of our al-
gorithm, and compare the quality of community detection between
our distributed algorithm and the sequential algorithm.

Due to the page limit, in Figure 4, we compare the convergence
of our distributed algorithm to the sequential algorithm using the
Amazon, DBLP, NDWeb, and YouTube datasets. As shown in each
plot of Figure 4, our distributed Infomap algorithm can achieve a
converged MDL close to the sequential algorithm. Similar results
have been also obtained on the other datasets. This shows that our
solution can address the challenging convergence problem when
involving delegates in distributed community detection.

We also compare the merging rate of the sequential Infomap
algorithm and our distributed algorithm in Figure 5. The merging
rate is the merged vertex number of each outer iteration compared
to the original graph vertex number. As shown in Figure 5, our
algorithm conveys a similar convergence pattern as the sequential
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Figure 4: Comparison of MDL between the sequential algorithm and our distributed algorithm.

Figure 5: Comparison of vertex merging rate between the sequential algorithm and our distributed algorithm.

algorithm. We notice that as our algorithm using delegates in clus-
tering, after the first iteration, the merging rate is usually around
50%. This means, after clustering with vertex delegates (Lines 2 to 7
in Algorithm 2), the original graph can be efficiently merged into a
graph that is several orders of magnitude smaller. Therefore, we do
not need the delegate partitioning in the second stage clustering
(Lines 10 to 14 in Algorithm 2).

Apart fromMDL, we have examined other quality measurements
to make sure that our algorithm can achieve high-quality results
of community detection. The measurements include Normalized
Mutual Information (NMI), F-measure, and Jaccard Index (JI). For all
these measurements, a high value corresponds to a high quality [27].
Table 2 shows the results for four datasets. All these values are
around 0.80, which means our distributed algorithm can achieve
similar results as the sequential algorithm.

Table 2: Quality Measurements.

Dataset NMI F-measure JI
DBLP 0.79 0.80 0.78
Amazon 0.82 0.81 0.80

4.2 Workload and Communication Balance
Analysis

There is very limited existing work on partitioning strategies of dis-
tributed Infomap algorithms. In other distributed graph clustering
research, the 1D partitioning is a common strategy for distributing
the original graph datasets [10, 21, 29, 30]. Thus, we compare our
delegate partitioning with the 1D partitioning on different datasets.

We first investigate the effect of different partitioningmethods on
the clustering workload balance. In order to compare the workload
balance between the 1D partitioning and our delegate partitioning,

we count the edge number of each subgraph on a processor. This is
because, for a distributed Infomap algorithm, each vertex needs to
calculate 𝛿𝐿 for all its neighbor vertices, and the total workload is
proportional to the total edge number on this processor. In Figure 6,
we examine the workload on each processor between the 1D parti-
tioning and our delegate partitioning. For all the large real-world
datasets, our delegate partitioning assigns each processor a simi-
lar number of edges. We find that on all these large datasets, the
difference can be significant between these two methods. For ex-
ample, when using the 1D partitioning on UK-2005, the maximum
workload can be 𝑂 (107) edges for a processor, while the maximum
workload on each processor is similar and less than 106 when the
delegate partitioning is used. For WebBase-2001, Friendster, and
UK-2007, if using the 1D partitioning, the minimum workload can
be only hundreds of edges while the maximum workload can be
up to 𝑂 (108). We also find that although UK-2005 has fewer edges
than WebBase-2001, the maximum workload of UK-2005 is 𝑂 (107)
and the maximum workload of WebBase-2001 is 𝑂 (106). This is
because the vertices in UK-2005 are more densely connected than
those in WebBase-2001. This means that high-degree vertices are
more prone to incur imbalanced workload using the 1D partition-
ing.

We also explore the effect of the 1D partitioning and our delegate
partitioning on the communication cost. Because the information
swapping is through boundary vertices in our distributed algorithm,
the communication cost correlates with the ghost vertex number.
By comparing the ghost vertices number between two partitioning
strategies, we can easily infer the communication cost. In Figure 7,
we compare the communication cost of two strategies on large
datasets. As shown in Figure 7, the difference of ghost vertex num-
ber can be extremely large for the 1D partitioning. For a distributed
algorithm, the communication cost is mostly determined by the
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Figure 6: Comparison of workload balance between the 1D partitioning and the delegate partitioning.

Figure 7: Comparison of communication balance between the 1D partitioning and the delegate partitioning.

slowest part. Thus, with the 1D partitioning, there can be an ex-
tremely high number of ghost vertices on certain processors, which
can cause intense communication and impair the total performance
of the distributed algorithm. Meanwhile, we can clearly see that
our delegate partitioning can effectively balance the local ghost ver-
tex number among processors for each dataset. Thus, our delegate
partitioning can significantly reduce the communication cost.

4.3 Execution Time Breakdown
We examine the main performance components of our algorithm
using large real-world datasets.We break down the key components
in our first clustering stage with delegates.

In the first clustering stage, there can be multiple iterations for
calculating 𝛿𝐿 of each vertex and swap community information. We
show one iteration running time on different datasets in Figure 8.
There are four key components in our profiling results, which are
Find Best Module, Broadcast Delegates, Swap Boundary Information
and Other. In Find Best Module, the algorithm calculates 𝛿𝐿 for each
vertex and moves the vertex to the neighbor community with the
minimum 𝛿𝐿. After this step, each processor uses Broadcast Dele-
gates to broadcast the community information using the message
structure in List 1, and uses Swap Ghost Vertex State to send the
boundary community information. The Other part mainly updates
the information of communities, such as the visit probability and
the exit probability. Moreover, it creates new modules and updates
existing module information.

As we stated previously, the collective operation (broadcasting
hubs information) for all delegated vertices only needs a small
portion of time in each iteration.

In Figure 8, we also notice that the time of Find Best Module,
Broadcast Delegates and Other are reduced with the increasing
number of processors. For Find Best Module, it is much related to
the workload on each processor. With our delegate partitioning, we

can evenly partition the workload among processors. The number
of high-degree vertices decreases with the increasing number of
processors, and thus the time of Broadcast Delegates can also be
decreased. While in the Other part, our algorithm mainly updates
local community information, which is related to the number of
local communities. For Swap Boundary Information, we find its
execution time is relatively stable, and does not change significantly
with the processor number. The reason is that when the graph is
partitioned among more processors, the number of ghost vertices
on the different numbers of processors can still be the same order
and all these ghost vertices need to be swapped in each iteration.

4.4 Scalability Analysis
We examine the scalability of our algorithm on large real-world
datasets. As we stated in Section 3.2, our algorithm first clusters
subgraphs with delegates and then clusters merged graphs with-
out delegates, the running time of our algorithm should be the
sum of these two stages running times. As we discussed previ-
ously, our method can achieve balanced computation workload
and communication workload, which can assure a better scalability.
Figure 9 shows the running times of our distributed algorithm on
four large real-world datasets: UK-2005, WebBase-2001, Friendster,
and UK-2007. We can clearly see that the total running time for each
dataset is nearly inversely proportional to the processor number,
which indicates that our clustering algorithm can achieve a scalable
performance on large real-world datasets.

In order to quantify the scalability of our algorithm, we mea-
sure the parallel efficiency, more specifically, the relative parallel
efficiency 𝜏 that is defined as:𝜏 =

𝑝1𝑇 (𝑝1)
𝑝2𝑇 (𝑝2) , where 𝑝1 and 𝑝2 are the

processor numbers, and 𝑇 (𝑝1) and 𝑇 (𝑝2) are their corresponding
running times. Figure 10 shows the parallel efficiency of our algo-
rithm for the small real-world datasets and the large real-world
datasets. For the baseline of each dataset, we use the running time
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Figure 8: Time breakdown on real-world datasets.

Figure 9: Scalability study of our algorithm using different datasets and different processor numbers. Our total clustering time
contains the times of the first clustering stage with delegates and the second clustering stage without delegates.

on a minimal number of processors that can suitably handle the
data size. Specifically, we use the running times on 16 processors
for Amazon, DBLP, and ND-Web, 64 processors for YouTube, 256
processors for UK-2005, Webbase-2001, and Friendster, and 1024
processors for UK-2007. Figure 10 (top) shows that our parallel al-
gorithm can achieve at least around 65% parallel efficiency for most
small- and medium-scale graphs, and achieve nearly 100% parallel
efficiency on 64 cores for the Amazon dataset. Figure 10 (bottom)
shows that our algorithm can achieve at least 70% parallel efficiency
for most large graphs. Through our analysis in Figure 9, we know
that the first clustering stage with delegates can be the dominant
part of the total running time. For those whose parallel efficiency is
around 100% (e.g., the Friendster dataset), the running time of the
first clustering stage with delegates is effectively reduced with the
increasing processor number. This states that through duplicating
high-degree vertices, our approach can effectively evenly distribute
the workload of graph clustering among all processors.

Table 3: Speedup of our algorithm on different datasets.

Dataset ND-Web LiveJournal WebBase-2001 UK-2007
Speedup 1.08 × 3.05 × 3.18 × 6.02 ×

We also compared the running time of our distributed algorithm
and the previous state-of-the-art Bae et al.’s work [4, 5]. We use
the fastest time in Bae et al.’s work to calculate the speedup of our
approach as shown in Table 3. We can see that for a small dataset
(e.g., ND-Web) the speedup is not significant. However, with the size
of graph increasing, our speedup is enlarged noticeably. Especially
on UK-2007, our approach archives about a 6× speedup.

5 DISCUSSION
Our experimental study clearly shows the scalability of our clus-
tering algorithm. However, we observe the different running times
of the first and second clustering stages across different datasets.
As shown in Figure 9, the running times of these two stages are

Figure 10: Parallel efficiency of our algorithm with (top) the
Amazon, DBLP, ND-Web, and YouTube datasets, and (bot-
tom) the UK-2005, WebBase-2001, Friendster, and UK-2007
datasets.

similar on UK-2005 and WebBase-2001. While on Friendster and
UK-2007, the running time of the second clustering stage is shorter
than the first stage.

We find that this is because the Friendster and UK-2007 datasets
can be clustered into a smaller number of clusters in the first stage.
Therefore, the running time of the second stage can bemuch shorter.
For the UK-2005 and WebBase-2001 datasets, in the first stage,
although their sizes are also reduced significantly, the resulting
cluster numbers are comparably larger. Moreover, we find that
for UK-2005 and WebBase-2001, the vertex movements reduce 𝛿𝐿
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relatively marginally in each iteration of the second stage. Thus, the
second stage needs more iterations and a longer running time. We
will conduct a more detailed investigation on the different running
times of the first and second stages on different datasets.

6 CONCLUSION
We present a distributed Infomap algorithm for scalable and high-
quality community detection. Our algorithm can gain accurate
community detection results and achieve balanced computation
workload and communication among massive processors for large
graphs, which demonstrate a clear improvement over the previous
state-of-the-art. Our algorithm makes Infomap scalable and practi-
cal to achieve high-quality communities from large graphs. In the
future, we would like to extend our algorithm using heterogenous
architectures and exploit hardware accelerations (e.g., GPUs) to
further improve the scalability of community detection. Moreover,
we will study algorithms to effectively and efficiently visualize
community detection results of large graphs. We plan to apply our
solution on other very large graphs from different domains.
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